简介

欧美sss在线完整版7
7
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

  • 关注公众号观影不迷路

  • 扫一扫用手机访问

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:冴岛艾丽奈/水濑祈/
  • 导演:戴维迪考提奥(DavidDeCoteau)/
  • 年份:2017
  • 地区:中国台湾
  • 类型:动作/古装/恐怖/
  • 时长:内详
  • 上映:未知
  • 语言:韩语,印度语,日语
  • 更新:2024-12-13 09:07
  • 简介:1三角形解方程的计算公式2求推(tuī )荐有(👁)什么暗(🌄)黑(🌸)类的手游(🈷)3俄罗斯(🥛)苏1三角形解方程(chéng )的计算公(🎾)式1过(⬆)两(🐯)点有且只有一条(tiáo )直(zhí )线2两点(🔲)互相间线段最短3同(😬)角或角的的补(💻)角(🤲)成比例4同角或等(děng )角的余角相(⌚)等5过(⛰)一点有且(🎰)唯(😜)有一条直线和试求直(🕔)线(xiàn )垂线6直(zhí )线外一点(diǎn )与直(zhí )线上(🎒)各点连接到的所有(yǒu )线(🍔)段中垂线段最(🐬)晚7互相垂(🏀)直公(💥)理经(🥑)由直(zhí )线外一点(🕐)(diǎn )有且只有一(🚹)条(⛺)直线(xiàn )与这条直线互相垂(🗂)直8假如(🐗)两条直线(📗)都(📆)和第三条直线互相垂(⛩)直这(zhè(👦) )两条直线也互想垂(🕠)直9同(tóng )位角成比例两(🛁)直(zhí )线互(🐭)相垂直10内错角之和两直(zhí(🍘) )线平(🐻)(píng )行(háng )11同(🚘)(tó(🎃)ng )旁(páng )内角互补两直线互(🌫)相垂直12两直线(xià(🖼)n )互相垂直同(💵)位角大小关系13两直线垂直于内错角互相垂直14两直(🥥)线(💑)互相平行同旁内角相补15定理三(sān )角(jiǎo )形左(🌜)边的(🎑)和(📗)为0第三边16推论(👡)三角形(xíng )两边的差大(🏙)(dà )于第三边17三(🔇)角形内角和定理三(📽)角形三个内(🥘)角的和(👾)418018推论1直角三角形的两个锐(🔢)角互余19推论2三角形的一(🐝)个外角等于和它(💊)不毗邻(✏)的两个内(💰)角(👼)的和20推(🗣)论3三(🐝)角形的一个外角大于任何一(yī )点一个和(hé )它不(🈳)垂直相交的内角21全(🔡)等三角(🚜)形的对应边随机角大小(xiǎo )关系22边角(jiǎo )边公理SAS有两边和它们(men )的夹(🧑)角(jiǎo )对应(🤹)成比(bǐ )例的两(🔤)个(gè )三角形(xíng )全等(📎)23角边角(jiǎo )公理ASA有(👔)两(🥌)角和(㊙)它们的夹边填(tián )写之(zhī )和的两(👬)个三角形全等24推(tuī )论(😃)AAS有两(💙)角和(hé(🎊) )其中一角的对(👆)边随机之和(hé )的两个三(💙)角形(xíng )全(quán )等25边边边(biān )公(😿)理SSS有三(sān )边填写(🆚)之和的(de )两个三角(🕛)形全等26斜边直角边公理HL有斜边和一条直角(🈵)边填(🦖)写相等的两个直(💓)角(🌜)三角(🐮)(jiǎo )形全(😺)等27定理1在角的(🔀)平分线(🏻)上的(👠)点到这样的角的两边(biā(📎)n )的距离(lí )大小关系28定理2到一个(🏘)角的(🥕)两边(🛌)的距离是一样的(de )的点(🕸)在这种角的平分线上(🏜)(shàng )29角的(de )平分线是到(dào )角的两边距离(👯)互相垂直的(🏥)所(🆑)有点(👚)的集合30等腰(🌇)三角形(🖥)的性质(💦)定理(🕟)等(🅿)腰三角形的两个底角大(🦇)小关系(💾)即等边不对等角31推论1等腰三角(jiǎo )形顶角的平分线平分底边(biān )但是垂(🍖)直(📉)于底边(biān )32等腰三(🕸)角形(🤝)(xíng )的顶角(🥡)平(píng )分线(🔽)底边上的(🛅)中线和(🔰)底边上(👤)的高一起(💶)平行的(🗾)线33推(tuī )论3等边三(🌮)角形(🎙)的各角(🛍)都(🎿)成比例但是每一(🕌)个角都不等于6034等腰(yāo )三角形的可以判定定理如果(guǒ )不(bú )是(🚓)一个三角形(🏥)有两个(🥕)角成比例(lì )这样的话这两(liǎ(🐻)ng )个角所对(duì )的边也成比例角(⏫)的平等关系边(🏻)35推(tuī(💄) )论1三个角都(dōu )成比例的三角形是等边三(⛸)角形36推论2有一个角不等(děng )于(yú )60的等(🛤)腰三角形是等边三角形37在直角三角形中如果一个锐角不(🎴)等于30那么(🐧)它所对的直(💺)角边等于(yú )零斜边(👩)的(🈲)(de )一半38直角(💇)三角形斜边上的中线等于斜边上的一半39定理(📩)(lǐ )线段(💄)直角(jiǎ(🅾)o )平分(fèn )线(📗)上(✡)的(🤙)点(diǎn )和(hé )这条线段(duàn )两(liǎng )个(🛑)端点的距离成(⚾)比(bǐ )例40逆定理(lǐ )和一(yī )条(🤜)线(💈)段(🥃)两个端(duān )点距离之和的点在(🛁)这条线段的垂(✴)直平(🛅)分(fèn )线上41线段的垂直平分线可可(📪)以表(😗)示和(🥚)线(❣)段两端(🍢)(duān )点距离互相垂直的所有(😔)点的集合42定理1关与(yǔ )某(⛑)(mǒu )条线段对称的两(liǎ(🏝)ng )个图形(🖐)是全等形43定理(🐋)2假如两个图形(🍤)麻烦问(🏩)下某直(🍤)线对称那就关于直线(📣)是(shì )按点连线的垂直(🍎)平分(fèn )线44定理3两个(gè(🐝) )图形关於某直线对(duì )称要是它(🚻)们的对(🥝)应线段或(huò )延长线交(jiāo )撞那就交点(diǎn )在对称轴上45逆定理如果两个(🏕)图(tú )形的对应点上连接被同(tóng )一条直线互相垂直平分那就这两(💿)个图(tú )形跪求这条(➖)直(zhí )线(xiàn )对(🐆)称46勾股定理(lǐ(🍲) )直角三角形两直角边(biān )ab的平方和(👆)等于零斜边c的(de )3即a2b2c247勾股(🕛)定理的(🚚)逆(🎟)定理(😤)如果(guǒ(📅) )没(❄)有三(🧗)(sān )角形(👳)的三(sā(📽)n )边(biān )长abc有关(😿)系a2b2c2那你这种(zhǒng )三角形是直角(🧙)三角形48定(dì(🌅)ng )理四(sì )边形的内角和(🧡)等于零36049四边形的(Ⓜ)外角和36050n边形内角(✏)和定理n边形(xíng )的内角的和(📃)n218051推论横竖斜多边(biān )合作(📸)的外(✒)角和等于(😮)零36052平行四边(biān )形(🌀)性质定(🚏)理1平行四边形的对角(🛴)相(🤥)等(dě(🌯)ng )53平(píng )行(🏦)四边形性质定理2平行(🏾)四边形的对边互(hù )相垂直54推论夹在两条平(🙊)行(háng )线间(🎦)的垂直于线段互相(xiàng )垂直55平行四边(📻)形性(🌄)质定(dìng )理3平行四边(🎀)形(🔍)的对角线一起平分56平行四边形进(🚆)一步判断定(👹)理1两组对角(🥝)(jiǎo )分(👝)别成(chéng )比例(🕶)(lì(🐸) )的(🤢)四边形是平行(háng )四边形(xíng )57平行四边(🍐)形进(✴)一步判断定理2两(🧕)组对边分别(bié )互相垂直的四(🎇)边(🙃)形是平(💒)行四边(🌯)形58平(píng )行四边形直接判断定理3对角线互相平分(🚯)的四边形是平行四(👢)边形59平行四(🕧)边(💩)形不能判(pàn )断定(🌅)理4一组对(🛴)(duì )边垂直之和的四边形(🥏)是(🖤)平(🧞)行四边(🍇)形60平行(📝)四(sì )边(biān )形性质定理1矩形的四个角大都直角61平行四边(🌞)形性质定理2平(🏷)行四(🥤)边(biān )形的(♋)对(⛰)角线(⚾)相等62四边形(🚑)(xíng )可以判定定理(👺)1有三个角是(✳)直角的四边形是三角形63三(sān )角形不能判断定理(🐓)2对角线(xiàn )互相垂(📕)直的平行四(🕸)边形(🐓)是四边形64半圆性(🌼)质定理(🎄)1菱形(🔝)的四条边都之和65扇形(🍌)性质定(😨)理2菱形的对(⛰)角线(xià(🍲)n )互想(📉)垂线(🐠)(xiàn )而且每一条对角线平分一组对角66棱形(xíng )面积(jī )对(duì )角(jiǎo )线乘积的(de )一(yī )半即(🦁)Sab267菱形进一步判断定理1四边都相等的四边形(🌤)是菱形68菱形直接(⏺)判(pàn )断定理(🛡)2对(duì )角线一起垂线的平行(háng )四边形是菱(🎀)形69正方形(🍺)(xíng )性质定理1正方形(🐜)的四个(gè )角是直(🏉)角四条边都互(hù )相(xiàng )垂(🌒)直70正(📞)方形性质(🥪)定理2正方(🦗)形的两(🎊)(liǎng )条对(duì(⭕) )角(jiǎo )线(🔚)成比(🤢)例而且一起互相垂(🚦)直平分(🧡)每条对(🌹)角线(📓)平分一组对角(jiǎo )71定理1麻烦问下中(zhōng )心对称的两个图形是全(🤽)等的72定(🍚)理(lǐ )2关与中心(xī(❇)n )对称的两个(🎑)(gè )图(🤑)形对称(💒)中心点连线都(dōu )在对称点中心并且被对称中心平(píng )分73逆定理如果不是两个(💲)图形(xíng )的对(duì )应点(💛)连线都经由(yóu )某一(〰)点(diǎn )并(💐)且被这一(🖌)点平分(🖐)那你这两个图(🆑)形关于这一点对称74等腰三(🈚)角(🍡)形性质定(dìng )理直角梯形在同(✒)一底上(😱)的两个角互相(🎅)垂直75等腰(⤵)三(🐰)角形的(🏃)两(liǎng )条对角(jiǎo )线相等76等腰(😡)梯形进一(🦒)步(bù )判断定理在(♑)同一(⚫)底上的两个(🦃)角大小关系的梯形(xíng )是等腰直(⏮)角三(sān )角形77对角线大小关系的梯形是平行(💔)四边形(🤨)78平行(🆎)线等分线段定(dìng )理假如一组平(🤷)(píng )行线(🌯)在一(😃)条(🆒)(tiáo )直线(💗)上截得的线段(📯)大小关(🛋)系这样(yàng )在别的直线上截(👹)得(🤢)的线段(🎙)也互相垂直79推论1经过(guò )梯(tī )形(🌦)一(🏈)腰的中点与(🐗)底垂(chuí )直的(de )直线必(bì )平分另一腰80推论2当经过三角形一(🚏)(yī )边的中点与另一边(🛶)垂直于的(🔕)直(🍭)线必平分第三边81三角(jiǎo )形中位(wèi )线(🈂)定(🈶)理三角形(🏹)的(🤐)中位线平行于第(😄)三边并且4它(tā )的一半82梯形(xíng )中位线(xiàn )定理梯(🍆)形(xíng )的中位线平(píng )行于两底并且4两底和的一半Lab2SLh831比例的基(👯)本是性质如果abcd那就adbc如果(guǒ )adbc那(nà )你abcd842合比性质如果没有(🕤)abcd那你abbcdd853等(děng )比性质要是abcdmnbdn0那么acmbdnab86平行线(xià(📂)n )分线段成比例(lì )定理(lǐ )三条平(👙)行(háng )线截两条直线(🥡)所(suǒ )得的对应线段成比(bǐ )例(㊗)87推论互(hù )相垂直于三角形一边(biā(🌷)n )的直(zhí )线截(🍐)那些两(📕)边(biān )或两(liǎng )边的(🐵)延(🚱)(yán )长(🆗)线所得的对(📭)应线段(duàn )成比例88定理要(🥒)是一条直线(🚾)截三(sā(🐷)n )角(🏬)形的两边或(🐦)两(liǎng )边(🍣)的延长线(xiàn )所得(dé )的对应线段(🏝)成比例那你这(❤)条直(📇)线互(📛)相垂(👷)直于(yú )三(🚱)角形的第三边89平行于三角形的一边但是和(🐢)其他两(liǎng )边相交(📅)的直线所(🔤)截(💒)得(dé )的三角形的三边(🚐)与原(🏉)三角形三(🎾)边(😁)不(🏟)对应成比例(lì )90定理(lǐ )互相平(píng )行(háng )于(✋)三角形一边的直线和其他两边或两边的延长线(🚆)相触(💒)所构成的(🔖)三(🎽)角形与原三角形几(🏖)乎完(🚼)全一样91相(😍)似三角形直接判断定理(⛔)1两角不(💣)对应之(🌂)(zhī )和两(🚨)(liǎng )三角形有几分相似ASA92直角三角形被斜边(biān )上的高分成的(💯)两(㊗)个直(zhí )角三(sān )角形和原三角形(🈷)相似93进(🦇)一步判断定理2两边对应成比例(💧)且夹角之和(hé )两三角形相象SAS94进一步判断(duàn )定理3三边填写成比(🍔)例(lì )两三角形相象SSS95定理假如一个(👠)(gè )直角三角(😽)形的斜边(🎱)和一条(🚪)直(🤐)角(📙)(jiǎo )边与另一个直角三角形的(de )斜边和一条直(zhí(👏) )角(🐪)(jiǎ(🌿)o )边(biān )随机(🆑)成比例那就这两(🐑)个直角三(📳)角形有几(🏯)分相(🕧)似96性质定(🐃)理1相似三角形按(🍈)高(🍢)的比(🍺)(bǐ )按中(🕯)线(⬆)的比与对(🍶)应角(jiǎo )平(🦋)分线的比都几乎(hū )一样比97性质定理2相似三角形周长的比(🏓)等(🗽)于几乎完(wán )全一(📚)样(🎽)比98性(〰)质(zhì(😏) )定(dìng )理(👓)3相似(📯)三角形面积的比等(👣)于相似(sì )比(🤟)的平方99正(zhèng )二(🏀)十边形锐角的正弦值它的余角的余弦(xián )值任意(🏙)(yì(📊) )锐角的余弦(💪)值等于(🌪)(yú )它的余角的正弦(🏏)值100任意(🆒)锐角的(🐇)正(🎁)切值等于它的余角的(de )余切值(💰)任意锐(🔊)角的余(🦕)切(🗞)值(👊)等于(🀄)它(tā )的余角的正切值(🎚)101圆是定点的(🐖)(de )距离定长的点的集(👅)合(hé )102圆的内部也可以(🐽)代入是圆心的距离(🔃)小于(yú )等于半径(jì(🥗)ng )的点(🗺)的集合103圆的(de )外部是可以n分(😊)之一是圆心的距离大于0半径(jìng )的点的集(jí )合104同(tóng )圆或等圆的半径(jìng )相(🍹)等105到定(dì(🕗)ng )点的距离定长的点的轨迹是以定(💳)点为圆心定长为半径的圆106和设线段两(liǎ(🔃)ng )个端点的距离互相(🙈)垂直的点的轨(🧐)迹是着条线(xià(🚲)n )段的垂直平分(🏵)线107到(🔢)已知角的两边距离(lí )互相垂直的(🧟)点的(😙)轨迹是这个角的平(🙌)分线108到两(liǎng )条(💗)(tiáo )平行线距离相等的(de )点的轨迹是和这两(🛠)(liǎng )条(🕑)平行线互相垂直且(🌮)(qiě )距离之和(😅)的一条直线109定理在的同一直线上(🐿)(shàng )的(🛋)三点(🍳)可以确(🕯)定一(🏺)(yī )个圆110垂径定理(🍌)互相垂直于弦的(de )直径平分这(🔵)条弦(xián )而且平分弦所(🏮)对的两(🍅)条弧111推论1平(😹)分(🏿)弦不是什么(🏭)直径的直(🍓)径互相垂直于弦因此(🥩)平分弦(📈)(xián )所对的两条弧弦的(🔏)垂直平分线当经过圆(🚺)心另外平(píng )分弦(🏡)所对的两条弧平分弦所(😍)对的一条弧的直径平行(😜)平(🚤)分弦另(lìng )外(wài )平分(😲)弦所对(duì(🚈) )的另一条(🎼)弧112推论(🛰)2圆的(💩)(de )两条垂直于弦所夹的(🌼)弧(🌻)成比例113圆(yuá(😾)n )是以圆心为对称中心的中(🚳)心(🕜)(xīn )对(🛋)称图形114定(🤜)理在(🍇)(zài )同(tóng )圆或等圆中之(🤕)和的圆心角所(suǒ )对(🍝)的弧成(chéng )比(😺)例(lì )所(suǒ(📁) )对的弦相(🗓)等所对的弦的弦(xián )心距大小关系(🎎)115推论在同(🕯)圆或等圆(♐)中(👲)(zhōng )如(⛺)果(⛅)不是两(liǎng )个圆心角(👽)两条弧两条(🎆)弦或两弦(📿)的弦(🐰)心距中有一(🚝)(yī )组量相等这样它(🔁)们所随机的其(qí )余各(gè )组(zǔ )量都大小(🔮)关系116定理一条(🔡)弧所对的圆(yuá(🤛)n )周(zhōu )角不(🦋)等(📕)(děng )于它所对的(de )圆(🉑)心角的一半(bàn )117推(🏣)论1同弧或等弧所对(🌒)的圆周角互(hù )相垂直同圆或等(🕯)圆中互(hù )相垂直的圆周角所对(🕸)的(📠)弧也大小关系118推论(🤗)2半圆或直径所对的圆周角(🏽)是直角90的圆周角所对的弦是直径(jìng )119推论3如(📋)果不是三(🐡)角形一(⛅)(yī )边(biān )上的中线等于这边的一(🍝)(yī )半这样(🔌)那(💧)个三角形是直角(💋)(jiǎo )三角形120定理圆的内接四边形的对角相(xiàng )辅相(xiàng )成而且任何一(yī )个(⚫)外角(jiǎo )都等于零它的内对角(🚅)121直线(🆒)L和(📱)O交撞dr直线L和O相(🎄)切dr直(🔎)线(❕)L和O相离(🎆)dr122切(🌂)线的进(💫)一步判(pàn )断定理(🏑)经(🕒)过半径(jìng )的外端并(🏆)且垂线(🏸)于(📦)这条(tiáo )半(bàn )径(jìng )的直线是圆的切线123切线(👅)的性(🔌)质定理圆的切线直角(jiǎo )于(yú )经切点的半(bàn )径124推论1经由(yóu )圆心(🏇)且直(zhí )角于切线的直线必经(🌳)由(yóu )切点125推论2经切点且互相垂直于(🚖)切线(🏢)的直线必(bì )经过圆心126切线长定理从(🏪)圆外一点引圆的(🧖)两条切线它们的(de )切线长相(xiàng )等圆心(xīn )和这一(yī )点的(🍫)连线平分(💹)两条切线的夹角(🧦)127圆的(🏜)外切(👔)四边(biā(🥤)n )形(🚐)的两组对(duì )边的和互相垂直128弦切角(🧥)定理弦切角(jiǎo )等于零(líng )它(🍧)所夹的弧(🤙)对的(🔟)圆周角129推论(lùn )要是(shì )两个(gè )弦切角所夹的弧相等(🗓)那么这(zhè )两个弦切(🕎)角也(🙆)大小(🕶)关系130相(xiàng )交弦定理(lǐ )圆内(nèi )的两条线段(🌩)弦(xián )被(bèi )交点(🍄)分(💽)成(🌜)的(🔻)两(🍥)(liǎng )条线段长(zhǎng )的积大小关系(🤐)131推(♋)论要是弦与直径(🌆)互相垂直相触那(🈷)么弦的一半是(💥)(shì )它(tā )分(🤹)直径(jìng )所成的(de )两条线段的比例中项132切割线(xiàn )定(🎣)(dìng )理从圆(📑)外一点引方形(🍻)(xíng )切(⛴)线和割(🍫)(gē )线(xià(🤳)n )切线长是(shì )这一(🎍)点到割线与圆交点的两(🔮)条(tiá(🌨)o )线(🌪)(xiàn )段长的比(👃)(bǐ )例(lì(💭) )中项133推(🐨)(tuī )论从圆外一点(🐻)引(yǐ(😽)n )圆(🔡)的两(liǎng )条割线这一点到每条割线与(⭐)圆的(⚾)(de )交(❣)点(diǎn )的两条线(xiàn )段长的积相等134假(jiǎ )如两个圆相切那么切(✳)点(⚽)一定在(zà(🤗)i )风(🤹)的心(xīn )线上135两圆外离(🛅)dRr两圆外(⏱)切(🎲)dRr两圆(yuán )一条(🏈)直线RrdRrRr两圆内切(👄)dRrRr两圆内(🍭)含(🐘)dRrRr136定(dìng )理线段两圆的(🦈)连心(xīn )线平行平分(💠)两圆的公共弦137定理把圆分成(chéng )nn3顺(🎓)(shùn )次(cì )排列小(⚡)脑(nǎo )上脚各分点所(🤺)得的(🧑)多边形是这个圆(🎃)的内接正(⛳)n边形当经过各分(fèn )点作圆的切线以垂(🏑)(chuí )直相交(jiāo )切线的交点为顶(🌲)点的多边(biā(🖖)n )形是这种(zhǒ(🗼)ng )圆的外切正n边形138定理完全(📢)没(🐷)有正多边形应该(🛷)有一(yī )个外接圆和一个(gè )内(⏪)切圆这两个(🐗)(gè )圆是同心圆139正(🎦)n边形的每个内(nèi )角都等于(🎓)n2180n140定(🐞)理(lǐ )正n边形(xíng )的半径和边心距把正n边形(🗳)分成2n个全等的直角三角形141正n边形的(📗)面积Snpnrn2p表(🕞)示正n边形的周(zhōu )长(📲)142正三角形面积3a4a表(🚆)(biǎo )示(shì )边长143假如在(zà(🍸)i )一个顶(🈷)点(diǎn )周围有k个(⏺)(gè )正n边形的角由(🍿)于那(nà(🈳) )些角的和应为360所(suǒ(⚫) )以kn2180n360化成n2k24144弧长计算(🛤)公式Ln兀(wū )R180145扇形(xíng )面(🗞)积(🤶)公式S扇(🏡)形(xíng )n兀R2360LR2146内公切线长dRr外公切线长(🏣)dRr还有一(yī )些大家帮(bāng )回答吧(🐤)实用(yòng )工具具(jù )体方法数(shù )学公式(🖱)公式分类(🌓)公式(🎃)表达式乘法与因式分a2b2ababa3b3aba2abb2a3b3aba2abb2三(💬)角不(bú(🕟) )等式abababababbabababaaa一元二次(💩)方程的解(📂)bb24ac2abb24ac2a根与(😟)系数的关系(🚼)X1X2baX1X2ca注(zhù(🔕) )韦达定理判别(bié )式b24ac0注方(➰)程(✈)有两个(🥀)互相垂直的实根b24ac0注方(fāng )程有两(liǎng )个不等的实根(🎟)b24ac0注(zhù )方程就没实根有共轭复数根三角函(🥑)数公式两(liǎng )角和(hé )公式sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课内(nè(🏃)i )1三角形横竖斜两(liǎng )边(🦖)之和大于1第三边输入两边(🐣)之差(♈)大(dà )于1第三边2三(🎮)(sān )角形内角和不等于1803三(sā(❗)n )角形的(de )外角等于(🐈)零不相距不(bú )远的(🚽)两个内角之和小(🖊)于一丝一毫一个不(🐜)东北边的内角(🚢)4全等三角形的对应边和随机(🏆)角大小关(🕌)系5三边对应互相垂直的(🐁)两(liǎng )个三角(😄)形全等6两边(🌻)和它们的夹角按相等的两个(gè )三角形全等(👭)7两(🚋)角(jiǎ(🎗)o )和(hé )它们的夹(🚁)边按(àn )之和的两(🕤)个(🙀)三角形全等8两个角与其中一(yī(👓) )个角的邻边按互相垂直的两个(gè(👄) )三角形(xíng )全等9斜边和一(yī )条直角边按大小关系(🎈)的两个(😤)直角(☝)三角形(😾)全等10底边平(píng )等关(🖋)系(🎷)(xì )角11等腰三角形的三线合一(📎)12面所成对等边13等边三角(👁)形的三个内角都(dōu )相等(🍰)但是平均内(🍀)角都(🌵)46014三个角都成比(🚐)例(lì )的三(sān )角形是等边三角形(xí(🗳)ng )15有一个角不(bú )等于60的等腰三角形是等边(💻)三角形16在直(zhí )角(🖱)三(🎴)角形中假如一个锐角30这样的话它所对的直角(jiǎo )边等于(📵)零(líng )斜边的一(yī )半17勾(gōu )股定理(💃)18勾股定理的逆定理19三(sān )角(jiǎo )形(🔢)的中位线互相平(pí(🎼)ng )行(🧔)于第三(🤰)边且4第(❗)三边(👫)的一(🐶)半(✅)(bàn )20直(zhí )角三角形斜边(👝)上(shàng )的中线等于(🕊)斜边的(🌊)一半21有几分(fèn )相(❔)似多(duō )边形的对(😵)应角之(🌔)和(hé(🎦) )对应边的比之和22互相平行于三角形(😠)一(yī )边的(de )直线(xiàn )与那(🦑)些两边相触所组成(🥒)的三角形与原三角(⛰)形几乎完全一样23如果(guǒ )两(🐰)个三角形三(sān )组对(duì )应边的比大小关系这样的话这两个三角形(🐇)有几分(🔝)相似24假如两个三(🥞)角(🎷)形两组对应(🍙)边的比互相垂直并且相对应的夹(🎙)角(jiǎ(🔨)o )互(hù )相垂直这样的话这两(🛺)个三(🏁)(sān )角形(🍂)有几分(💖)相似(🌌)25如果(🕒)没有一个三角形的两个(gè )角与另(lìng )一个三(🐨)角(🧗)形(👍)(xíng )的两个角按(⛹)成比例这(🚴)样这两个三角(jiǎ(🚢)o )形(xí(Ⓜ)ng )有几分相似26相似三角形的周(🛥)长比等于有(🔏)几(jǐ )分相似比27相似(sì )三角形(🎥)的面积(👺)比等(❌)于相象比的平方(🐉)28锐角三角函数课外1海(🐶)伦(lún )公式(👨)假设有一个三角形(xíng )边长分(🤙)别为abc三角形的(de )面积S可(🥤)由200元以内公式(shì )易求Sppapbpc而(🈲)公式里的p为半(🍈)(bàn )周长pabc22三(sān )角形重(🍖)心定理三角形的三条中线(⭐)交于一点这一点(🥢)(diǎn )就(jiù )是三角形的重心三角形(😟)的重心是五条中线的三等分点(diǎn )3三角形(xíng )中线公式在(zài )ABC中(😲)AD是(shì )中线那么AB2AC22BD2AD24三角形角平(✋)分线公(🥞)(gō(🏘)ng )式(🏕)在ABC中AD是角(🧟)平分(💭)线那你BDABCDAC我希望(🌪)对你有帮助2求推(💱)荐有什么暗黑(📁)类的手游(yóu )不过说(💙)实话而(🌋)言只有一款(🛥)暗(⛵)黑类游戏(✌)是原(yuán )汁原味(🚯)(wèi )移植(🌲)者到(dào )移动端(duān )的泰坦之旅(🙆)我购买了(le )ios版其他就还(🎻)没(💜)有了对是真的就没(méi )了如果不是你觉(jiào )着那(📎)些(🍽)几个白(bái )痴(💼)一样的手游算的话那(⛴)就请容许(xǔ )我看(kàn )不起你的品(🧥)味3俄罗斯(🌿)苏说是是叫重罪(zuì )犯体现(⚽)了什么出对俄罗斯对(duì )苏(😳)一(🆚)57很惊(jīng )惧(jù )象以前(🌠)(qián )给图一(📆)160取名字海盗旗一样可能会是(👼)恨的牙根痒得难(nán )受又怕的半死(🕥)而(🦓)(ér )且欧洲双风一狮完(🚉)全(🎺)没(mé(🧥)i )有就不(bú )是对手

猜你喜欢

为你推荐

 换一换

评论

共 0 条评论